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Abstract-Two important aspects of fluid-particulate interaction in dilute gas-particle turbulent flows, 
namely the turbulent particle dispersion and the turbulence modulation effects, are addressed using the 
Eulerian and Lagrangian modeling approaches to describe the particulate phase. Gradient diffusion 
approximations are employed in the Eukrian formulation while a stochastic prccedure is utilized to simulate 
turbulent dispersion in the Lagrangian formulation. The k-s turbulence model is used to characterixe the 
time and length scales of the continuous phase turbulence. Models proposed for both schemes are used to 

predict turbulent, fully-developed gas-solid vertical pipe flow with reasonable prediction accuracy. 

INTRODUCTION 

TWO-PHASE turbulent dispersed flows are encountered 
in a wide variety of engineering applications. Exam- 
ples of such flows include the pneumatic transport 
of particulate materials, two-phase gasification and 
combustion and environmental pollution. Strong 
couplings between the continuous and dispersed 
phases are the main characteristics of these flows. 
Recently, mathematical models, which include 
numerical methods and physical models, capable of 
predicting particle velocity and concentration have 
become very important tools in understanding these 
two-phase flow processes. Turbulence also plays a 
dominant role in determining particle or droplet 
dynamics. Any realistic predictive model should thus 
be able to account for the turbulent dispersion of 
dispersed phases. 

In general, two-phase flows are too complex to be 
treated in a complete way. Basically, there are two 
approaches commonly used to predict particulate 
two-phase flows. One, called the Lagrangian or ‘track- 
ing’ approach, treats the particles as discrete entities 
in a turbulent flow field and their trajectories are cal- 
culated. The mutual coupling between fluid and par- 
ticles is accounted for by estimating the particle source 
term for each computational cell visited by the 
particle. This is followed by a recalculation of the 
flow field incorporating these source terms. The other 
approach is the so-called ‘two-fluid’ model or Eulerian 
approach. In this approach, the cloud of particles is 
regarded as a continuum and the appropriate govem- 
ing equations in differential form are solved for both 
phases. The effect of two-way coupling is incorporated 
as extra source terms in the continuum equations for 
both phases. The mechanism of including the tur- 
bulent dispersion effect is very different for each 
approach in view of the inherent difference in the 
two descriptions. The Lagrangian model employs the 

Monte Carlo procedure to calculate dispersed phase 
properties such as the number density distribution 
and the mean and fluctuating particle velocities. On 
the other hand, phenomenological models are 
required to close the time-averaged conservation 
equations for both phases in the Eulerian approach. 
Often, gradient type models are used to relate the 
turbulent particle flux to the mean particle con- 
centration gradient to account for dispersion effects. 

Both approaches have been studied extensively in 
the last decade and excellent reviews of recent develop- 
ments in both modeling schemes exist [l-4]. Com- 
parative performances of these two approaches have 
also been investigated very recently [5, 61. At the 
present time, it is not universally accepted which 
approach is more valid for simulating particulate 
turbulent flows, since each appears to have inherent 
advantages and weaknesses. The aim of the present 
study is to compare the Lagrangian and Eulerian 
models with the simultaneous inclusion of two impor- 
tant aspects of the fluid-particle interactions-the tur- 
bulent particle dispersion (the influence of fluid tur- 
bulence on the particles), and the ‘modulation’ effects 
[7] (the influence of the particles on fluid flow 
turbulence). These two phenomena have often been 
neglected in most of the previous numerical modeling 
studies. Comparative studies between the two-fluid 
and tracking methods in which turbulence effects are 
included have also not been reported in the literature 
for wall-bounded flows. In particular, the inclusion of 
the modulation effect in the Lagrangian formulation 
for confined flows represents a novel contribution. 

GOVERNING EQUATIONS 

In this section, we present the assumptions made 
and the forms of the governing equations adopted 
for predicting turbulent, confined gaseous flows laden 
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NOMENCLATURE 

4 projection area of a particle (rnf,2/4 for I@ particle number flow rate 
a spherical particle) P,p pressure 

Co drag coefficient Re flow Reynolds number 
C,,, C,, C2 turbulence model constant Re, particle Reynolds number 
D nozzle or pipe diameter SC,, SC, particle, turbulent Schmidt number 
D,, D, turbulent eddy diffusivity t. particle relaxation time. 

dP particle diameter 

2 

interphasal interaction force Greek symbols 
fraction of particles belonging to diameter ‘J numerical constant introduced in 
group r equation (23) 

fs fraction of particles leaving starting hij Kronecker delta 
location /I E dissipation rate of turbulent kinetic energy 

c particulate mass fluxes 8 volume fraction of particles 
Gn turbulence kinetic energy production p(. v molecular and kinematic viscosity of fluid 

9 gravity VI eddy viscosity of continuous phase 
k continuous phase turbulent kinetic energy v,, eddy viscosity of dispersed phase 

k, particulate phase turbulent kinetic P continuous phase density 
energy 

PP 
particulate phase loading, p&I 

1, eddy size PE material density of the particle 
tip particle mass flow rate 5 Kolmogorov time scale. 

with solid particles. The assumptions implied in the 
present study are as follows. 

(1) The particulate phase is dilute and comprised 
of a monodisperse particle size distribution for which 
particle-particle interactions are negligible but fluid- 
particle two-way interaction is allowed. 

(2) The fluid phase is Newtonian and possesses 
constant physical properties. 

(3) The mean flow is steady, axisymmetric, in- 
compressible and isothermal. 

(4) Molecular diffusion and the Brownian motion 
effect on the particulate phase are negligible compared 
with turbulent dispersion. 

(5) Triple correlations involving fluctuations in the 
particulate phase density are negligible. 

The criteria, under which these assumptions as well 
as the continuum approach conditions are valid, have 
been discussed in ref. [8]. The derivations of the 
governing equations for the continuous phase in 
Eulerian form and for the dispersed phase in both the 
Eulerian and Lagrangian formulation are given by 
Soo [9], Hinze [lo], Dukowicz [Ill, and Drew [12]. 
These equations are summarized in the following sec- 
tions. 

Continuous phase equations 
Equations for the mean turbulent motion are 

obtained by applying the Reynolds decomposition 
and time averaging the instantaneous continuity and 
momentum equations 

9 

-~(Prr:n;)+Fpi. (I) 
/ 

Both Lagrangian and Eulerian approaches use 
equations (I) and (2) for the underlying continuous 
phase mean flow. However, the expression for F,,i, 
which will be described later, differs for either 
approach. 

Dispersed phase equations-Eulerian 
In this approach the dispersed phase is treated as a 

continuum. The ‘dusty gas’ equations of Marble (as 
contained in refs. [8, 19) form the governing equa- 
tions for the dispersed phase. They are 

The previously mentioned assumptions exclude the 
triple correlation and pressure field in equation (4). 
The second-order correlations in equations (3) and (4) 
are the turbulent fluxes of momentum and turbulent 
dispersion of particles which require modeling. 

Dispersed phase equations-Lagrangian 
An alternative treatment of the dispersed phase 

involves the tracking of individual particles as they 
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move through the turbulence field of the continuous 
phase. This is essentially a statistical approach and 
requires the tracking of a sufficiently large number 
of individual particles in order to obtain statistically 
stationary information for the dispersed phase. This 
approach has been adopted by Dukowicz [ 111, Crowe 
et al. [14], Shahnam and Jurewicz [IS], and Shuen et 
al. [16, 17] among others. 

The usual starting point for the Lagrangian, particle 
tracking approach is the equation of motion of a 
particle within a fluid continuum which was originally 
derived by Basset, Boussinesq, and Oseen, hence the 
B-B-0 equation (Soo [9]). For the particular case of 
the motion of solid spheres for which p << p,, the 
approximate form of the B-B-O equation of motion, 
subject to the previously stated assumptions, is 

dUi (pi - u;) 
x = 7 +9i. (5) 

Equation (5) represents a form in which the virtual 
mass term, Basset term, and pressure gradient from 
the fluid acceleration term have been neglected from 
the full B-B-O equation. For the cases considered in 
this study (d, d 200 pm), the most important term in 
this equation is the hydrodynamic drag force. The 
gravity force term can be neglected because the par- 
ticle’s settling velocity (which is proportional to the 
particle relaxation time multiplied by the gravitational 
acceleration) is at least one order ofmagnitude smaller 
than the particle’s mean axial velocity. Solution of 
equation (5) yields the trajectory of an individual 
particle. In the most general form of the Lagrangian 
formulation, the velocities in equation (5) are the 
instantaneous values comprising the mean and fluc- 
tuating components. For a polydisperse particle size 
distribution, the particle size as well as other particle 
parameters are specified in a stochastic manner at the 
start of each particle’s motion. 

The interphase interaction force 
The drag force phi which appears in the governing 

equations set is expressed from those of the standard 
experimental drag curve of a solid sphere with a con- 
stant diameter in a steady motion. In the Eulerian 
approach, Ffi is the time averaged part of the inter- 
action force F,i which has the form 

where the drag coefficient, C,,, is the same as that used 
by Durst et al. [ 181 and is given by 

CD = ~(1+0.15Re~6”) and Re, = -. bi4dp 

P V 

(7) 

ThUS 

&i =;(l+0.15%;6”)&(Vi-“i) 

+ ~(1+0.15i%~““‘)p;(s;-u~ (8) 

with 

G 
P 

= Iu,- Y,ld, 
V 

and the particle relaxation time 

t. = dip,/ 18pv. (9) 

In the Lagrangian formulation, the interaction 
between the continuous phase and the dispersed phase 
is treated using the particle-source-in cell method of 
Crowe et al. [14]. In general, this involves calculating 
the mass, momentum, and energy sources due to a 
particle for each computational cell visited by the 
particle as it traverses the fluid continuum. These 
additional sources due to the particles are then intro- 
duced into the continuous phase equations during 
the next super-iteration. A sufficiently smooth particle 
source distribution is obtained if the number of com- 
putational particles representing groups of particles 
making up the whole population is large enough. 

For the present study, only the momentum source 
term due to the particles is considered since there is 
no mass or thermal energy exchange between the 
phases for the isothermal flow investigated. For this 
case, the first term on the right-hand side of equation 
(5) becomes 

2C p 
4 “p.4 

~u,-uil(ui-ui). 

According to the numerical solution procedure used 
in this study, the flow domain is subdivided into a 
finite number of cells forming an orthogonal grid. The 
particles are introduced at a finite number of starting 
locations with a finite number of particle sizes at each 
starting location. The transfer of momentum between 
the phases is due to the drag force. Following Durst 
et al. [ 181, the particle momentum source term for any 
arbitrary control volume for particles of a single size 
group a and starting location /I is 

5’ = ti;$+ ;I ‘WI 

s 
C,lU,-U~PI(U,-@“‘)dt (10) 

‘. 

where tin and to., are the times when the particle enters 
and leaves the control volume, respectively, and p;” 
is the number flow rate of spherical particles of size 
group a and starting location fl such that 

p.0 
P = ggpx. (11) 

The total momentum source due to all the particles 
that traverse the control volume is finally obtained as 
a summation over all such particles 
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6” = 1 2 q. (12) 
¶.cell kcdl 

Because of the averaging process, higher order 
terms appear in the continuous phase equations as 
well as in the Eulerian dispersed equations requiring 
closure schemes. As mentioned in the introduction, 
for the Lagrangian formulation, the effect of the tur- 
bulence on the particle motion will be simulated here 
by a stochastic approach. These will be described in 
the next section. 

TWO-PHASE TURBULENCE MODELS 

The hierarchy of turbulence closure models for 
single-phase flows range from simple mixing-length 
type zero-equation models to second-order mean 
Reynolds stress models where transport equations are 
solved for each component of the turbulent flux 
vectors and tensors. Extending the single-phase tur- 
bulence models to account adequately for turbulence- 
particle interactions has also been attempted recently 
[ 13, 19,201. The present modeling approach is based 
on the two-equation k-e turbulence model. The tur- 
bulent stresses of equation (2) are modeled using a 
gradient constitutive equation 

a= -v,[;($+z)]+;k6, (13) 

where the eddy viscosity of the carrier phase is given 

by 

v, = C,,k’/E. (14) 

In the two-phase flow situation, the continuous and 
dispersed phases interact with each other at both the 
mean and fluctuational levels. At the fluctuational 
level, the particles experience dispersion due to the 
action of the turbulence field while the turbulence 
field itself experiences a modulation effect due to the 
particles. 

Turbulence dispersion 
In an Eulerian model, particle dispersion is often 

modeled as a Fickian diffusion process, requiring the 
use of some sort of particle eddy diffusivity. Higher 
order particle dispersion models have also been pro- 
posed by Shih and Lumley [2l]. Here we adopt the 
gradient type diffusion model of Chen and Wood [S] 
for the dispersed phase turbulent fluxes and particle 
dispersion by assuming the following relations : 

-i-i 
ViVl 

The use of the Boussinesq assumption for the par- 
ticulate phase requires the definition of an ‘effective’ 

turbulent kinematic eddy viscosity, vp, and turbulent 
diffusivities, D, and D,. These are determined from 
the characteristics of the underlying turbulent motion 

by 

1 “p=---- 
VI 1+ t.lr, (17) 

D, = 2 and D, = 2 (18) 
t P 

where r, is the time macroscale of the turbulence and 
is evaluated as T, = O.l25k/e. The choice of turbulent 
Schmidt number was set to be SC, = SC, = 0.7 follow- 
ing the testing of Chen and Wood [ 131 for axisym- 
metric flows. 

To account for dispersion effects in a Lagrangian 
model, particles have to be tracked through a con- 
tinuous succession of turbulent eddies superimposed 
upon the mean flow of the continuous phase. Theo- 
retically, it requires knowledge of the full time history 
of the turbulent flow, obtained by direct simulation 
from solving unaveraged unsteady Navier-Stokes 
equations. Since this is not yet feasible for most flows 
of practical interest, the turbulence is simulated by 
means of a stochastic process, whereby mean values 
are determined by equations (1) and (2). The instan- 
taneous velocities for the continuous and dispersed 
phases are given by 

and 

ui = u,+u: (19) 

vi = v,+v: (20) 

respectively. The turbulence information required to 
evaluate the fluctuational component of the fluid vel- 
ocity is obtained from the kinetic energy field obtained 
from the most recent super-iteration on the fluid phase 
equations. The approach adopted follows after those 
outlined by Gosman and Ioannides [22] and Shuen et 
al. [16, 14. It is assumed that the turbulence is iso- 
tropic and that the fluctuational component of the 
fluid velocity is given by a Gaussian distribution the 
standard deviation uii of which is given by 

uii = (2k/3)“‘. (21) 

The fluctuational component of the velocity at any 
required location is then obtained by randomly sam- 
pling the distribution. The actual turbulence field 
encountered in pipe flow (wall-bounded flows in gen- 
eral) is anisotropic, thus requiring a non-Gaussian 
distribution of the turbulence intensity. Hence, the 
above assumption of a Gaussian distribution rep- 
resents a significant simplification. 

It is known that the B-B-O equation can only be 
rigorously solved after a complete space-time rep- 
resentation of the turbulent fluid flow field has been 
obtained. However, an approximation to this require- 
ment can be achieved if the particle relaxation time, 
t*, is of the same order of magnitude as the integral 
time scale of the turbulence field or smaller. This is 
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indeed the case in the present study. The integral time 
scale distribution of the turbulent flow field can be 
viewed as being equivalent to a distribution of tur- 
bulent eddies with which a particle interacts along its 
trajectory. The interaction time between a given eddy 
and the particle is taken as the smaller of the eddy 
lifetime (the integral time scale) and the particle transit 
time within the eddy, obtained as outlined below. 

If the characteristic size of an eddy is assumed to 
be its dissipation length scale, I,, where 

I, = C;14k”2/e (22) 

the eddy lifetime is then estimated as 

te = JWW,W. (23) 

Kallio and Stock [6] have deduced, from experimental 
measurements, that y assumes values between 0. I5 
and 2.00. Faeth and co-workers have used the defi- 
nition 

r, = 1,/(2k/3)“2 (24) 

which corresponds to a value of y = 1.825742 in equa- 
tion (23) above. Gosman and Ioannides [22] used 
te = fJu’l where II’ is the randomly sampled velocity 
fluctuation value from the distribution. 

An estimate for the transit time of a particle within 
an eddy is obtained from the solution of a linearized 
form of the equation of motion of the particle as 

f,, = -f.In[l.O-I,/r.}u,-o,l]. (25) 

Efects of dispersedphase on turbulence 
The above discussion concerns the effect of 

turbulence on the particle dispersion. It is now well 
known that even relatively small amounts of dispersed 
solids will modulate the turbulence structure of the 
carrying gas flow [23-251. The interaction between 
particles and the continuous phase yield extra dis- 
sipation terms in the modeled equations for k and E 
when turbulence modulation is considered. For the 
Eulerian treatment, the modulation effects were 
reflected in the extra dissipation terms in the k and E 
equations, which were derived by including the inter- 
phase interaction force terms in the continuous phase. 
The model used in this study is based on the two- 
phase turbulent free shear flows of Chen and Wood 
[8] and is summarized as 

+G,c-e 

- $f (l+oxRey7)(u,- v,) 
l 

W-W 

-:$[I-exp(-OSf.ejk)] (26) 

CTH2) 

+;(C,G,-C2c)-2 F; (27) 
. 

CTH3) 

where G,, the turbulence kinetic energy production, 
is given by 

The terms (TH2) and (TH3) are ‘extra dissipation’ 
terms due to the particle slip velocity at the fluctuation 
level. The model is valid for the situation T, 2 r. >> 7, 

where 7 = (V/E)“’ is the Kolmogorov time scale. The 
model constants used are those given in ref. [26]. 

The implementation of the turbulence modulation 
effect within a Lagrangian formulation has been rela- 
tively ignored until very recently. Although the con- 
tributions of Shuen er al. [ 16, 17] se-em to point in the 
right direction, the scheme used in this study follows 
the simpler approach proposed by Mostafa and Mon- 
gia [5). The instantaneous particle source properties 
are known from the stochastic formulation; thus, the 
extra dissipation terms derived following con- 
ventional procedures [IO] and appearing in the k equa- 
tion are exact and require no modeling. However, the 
numerical procedure for these terms, especially for 
confined flows, is not fully established. We thus model 
the turbulence correlation between the relative vel- 
ocity and the continuous phase component. In par- 
ticular, the turbulence kinetic energy modulation term 
used in the Lagrangian formulation is similar to that 
developed by Chen and Wood [13] and presented 
in equation (26). The particulate phase loading, pp. 
appearing in the expression is calculated using the 
particulate phase void fraction, 0, obtained for each 
cell as 

e =+I g (I,,,-&) ( ) all P. 
(29) 

where Vis the cell volume. Equation (29) is consistent 
with the dilute particulate phase assumption, 0 << 1. 

NUMERICAL SCHEME AND BOUNDARY 

CONDITIONS 

The governing equations for the continuous phase, 
turbulence models, and Eulerian dispersed phase are 
solved numerically using a variant of the finite-volume- 
based code developed in ref. (271 for two-phase 
applications. 

The scheme adopted for the Lagrangian approach 
is similar to that suggested by Crowe ef al. [14]. First, 
the ‘clean’ fluid flow field is obtained by solving the 
continuous phase governing equations. Next, particle 
trajectories are computed for a predetermined number 
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of representative particles such that a statistically continuous phase in all cases at the inlet plane. The 
stationary solution is obtained for the overall particle dispersed phase loading ratio &/p was prescribed as 
flow field. A minimum of 1500 computational par- a uniform profile. At the wall of the confined chamber 
ticles were employed for that purpose in the present or pipe, a slip condition was imposed on the stream- 
investigation. The particle trajectories are obtained by wise velocity component and the transverse com- 
solving the non-linear ordinary differential equation ponent was set to zero at the walls in the Eulerian 
of motion subject to the currently existing continuous treatment. A no-flux or impermeable boundary con- 
fluid flow field and using the fourth-order Runge- dition was specified for & by setting a&/an = 0. In 
Kutta algorithm. During the calculation of the par- the Lagrangian treatment of the particulate phase, the 
ticle trajectories, the sources of momentum, kinetic boundary conditions have to be specified for each 
energy and its rate of dissipation, all due to the particle particle. It is recognized that the particle trajectory 
motion, are accumulated for each computational cell calculation is essentially an initial-value problem. 
of the flow field. These sources are then used in the However, it is necessary to specify the particle 
next global iteration of the continuous phase flow field behavior at the symmetry axis and the wall since the 
until convergence is attained. particle motion takes place within a bounded domain. 

In the current investigation of axisymmetric vertical 
pipe flow, a uniform grid of 50 axial nodes by 23 
transverse nodes was used. A variable time step option 
was developed for the Runge-Kutta integration of 
the particle equation of motion. The time step was 
evaluated for each computational cell traversed based 
on the cell dimensions and the estimated residence 
time of the particle within the cell. This scheme 
ensured that source terms were computed for each 
cell visited by the particle, thus ensuring a smooth 
distribution of each source type for the entire flow 
field. This condition was attained by constraining the 
particle to undergo a minimum of four integration 
steps within each cell. Further details on this and other 
aspects of the Lagrangian scheme are available in ref. 
[26]. However, it is pertinent to also point out that in 
the particle trajectory calculations, the fluid properties 
utilized are those interpolated using the four nearest 
neighbor-nodes regarding the particle’s current 
location, resulting in second-order accuracy [28] when 
compared with the more common approach of 
assuming the fluid properties to be uniform over the 
current cell within which the particle is located. 

RESULTS AND DISCUSSION 

The validity of any numerical code for the pre- 
diction of physical phenomena rests on its ability to 
correctly simulate the available experimental data. In 
the present investigation, the experimental data of 
Tsuji et al. [24] for the vertical upflow of an air- 
particulate system in a straight pipe have been used. 

Boundary conditions-continuous phase 

At the inlet plane, the axial velocity of the con- 
tinuous phase is specified using the measured profile 
whenever possible. Otherwise, uniform profiles are 
assumed and the radial component is set to zero. 
Turbulent kinetic energy is assumed to be’ a fraction 
(3%) of the inlet mean kinetic energy and 3% of 
the characteristic length is used to evaluate the inlet 
dissipation. The conventional wall functions are used 
but modified to take into account the effects of 
particles. Some details are given in ref. [27]. At the 
exit plane, the boundary condition a( )/ax = 0 was 
imposed for all variables, equivalent to presuming 
fully-developed flow. Mass continuity of the con- 
tinuous phase and dispersed phase was separately 
checked and corrected iteratively ; details are available 
in ref. [26]. 

Figure I shows the radial profile of the slip in the 
axial velocity between the air and the particulate phase 
as well as the predictions using the Eulerian and 
Lagrangian schemes. The mean particle size and the 
loading ratio are 200 pm and 1.0, respectively. It can 
be seen from the figure that both schemes predict the 
air velocity fairly accurately with the Eulerian scheme 
(ES) showing some underprediction in the 30% por- 
tion of the pipe near the wall. The Lagrangian scheme 
(LS), on the other hand, overpredicts the air velocity 
for the whole pipe except in the near-wall region. Both 
schemes yield better predictions of the particulate 
phase velocity. The crossover in the sign of the slip 
between the phases which occurs at about 0.20R from 
the wall is particularly well predicted by the Eulerian 
scheme. The crossover predicted by the Lagrangian 
scheme is at a location about O.lOR from the wall. 
The Lagrangian scheme shows a very good prediction 
of the particulate phase axial velocity in the central 
two-thirds of the pipe. However, there is considerable 
waviness in the particulate phase velocity profile 
which probably indicates that the 1500 computational 
particles (cps) used in the simulation are insufficient 
to obtain a smooth profile, even for the uniformly 
distributed particle concentration and mono-disperse 
size distribution used in the present study. This is in 
contrast to the findings of the study by Durst et al. 
[I81 in which they report that 140 cps (or 10 cps per 
grid node) are sufficient to obtain smooth profiles. It 
should be noted, however, that the study by Durst et 
al. neglects both the effects of particle dispersion and 
turbulence field modulation. 

Boundary conditions-dispersed phase 
The streamwise and transverse velocity components 

of the dispersed phase were set equal to those of the 

In Fig. 2, we present results similar to those of Fig. 
1 but for the higher particle loading ratio of 2.1. Here, 
the Eulerian scheme overpredicts the air velocity for 
most of the pipe except close to the wall. The Lagran- 
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FIG. I. Radial profiles of axial velocity in fully-developed vertical pipe upflow for solids loading ratio of 
1.0. 

gian scheme, on the other hand, yields a good pre- trend but with some underprediction away from the 
diction of the experimental results. With regard to the central core. 
particulate phase velocity, ES produces an essentially The effect of the particulate phase on the axial air 
flat profile across the pipe, underpredicting the data velocity profile as predicted by ES for particle loading 
in the central half and overpredicting in the near wall ratios of 1.9 and 3.2 are presented in Fig. 3. The 
region. LS, on the other hand, produces the proper predictions are generally very good except for some 
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FIG. 2. Radial profiles of axial velocity in fully-developed vertical pipe uptlow for solids loading ratio of 
2.1. 
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FIG. 3. Effect of particle loading on mean axial velocity profiles. 

overprediction in the central two-thirds of the pipe 
for the 1.9 loading ratio case. 

The turbulence modulation effects predicted by the 
two schemes for a loading ratio of 3.2 are shown in 
Fig. 4. The predictions are higher than the exper- 
imental values in every case shown except that by the 
Eulerian scheme in the central half of the pipe and for 
the loading ratio of 3.2. The experimental data exhibit 
increased modulation as we move away from the pipe 
axis and towards the wall. The LS predicts an opposite 
trend to this in which the maximum modulation is 
near the pipe axis. The ES, on the other hand, yields 
a constant modulation level across the pipe. It should 
be noted, however, that the modulation effect in such 
flows is a real one and needs to be included in pre- 
diction schemes in order to obtain more realistic 
results. Efforts to investigate the causes of the various 
trends observed in the modulation of the turbulence 
intensity depicted in Fig. 4 are continuing. 

Figures 5 and 6 show the prediction of the nor- 
malized particle mass flux. In Fig. 5, which is a 
Lagrangian simulation, 1500 computational particles 
have been used while in Fig. 6, 9000 computational 
particles were used for the same experimental data. A 
mass flux value near the centerline of the inlet plane 
was used as the reference. The smoother profiles 
obtained with the 9000-particle simulation are obvi- 
ous. Also included in Fig. 6 is the prediction obtained 
using the ES. The Eulerian scheme gave a uniform 

particle distribution at each cross-sectional plane of 
the pipe. However, the Lagrangian scheme yields a 
particle aggregation in the central portion of the pipe 
by the time the outlet plane is reached. This aggre- 
gation was not observed for the same experimental 
data when the Lagrangian scheme was run for a non- 
stochastic setting. 

The computations for the current study were car- 
ried out on a Perkin-Elmer 3250 minicomputer. A 
typical ES run took about 1 h while a typical LS 
run required seven super iterations on the particle 
trajectory calculations using an under-relaxation 
factor of 0.5 for all source term computations and 
required about 4a h of CPU time. The required CPU 
time increased slightly with particle loading ratio giv- 

ing an increase in CPU time of 1.6% between the 
lowest and the highest particle loading ratios com- 
puted. 

CONCLUDING REMARKS 

in summary, it has been demonstrated that the Eul- 
erian scheme is less expensive to implement and gives 
better prediction of confined, turbulent fluid-par- 
ticulate flows for the case of solid particles of about 
200 pm diameter or less and for which p,/p << 1 and 
ep <c 1. However, for fluid particulate phases in which 
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particle sizes change along particle trajectories so that dieted using the LS still needs to be improved. This, 
a mono-disperse particle size assumption is un- we believe, is strongly dependent on the boundary 
realistic, the Lagrangian scheme is probably the only condition specikation for the particle trajectory cal- 
option. culation at the pipe axis. However, the predictions 

The non-uniform particle concentration profile pre- obtained in the present investigation for confined 
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used. 

flows using the Lagrangian scheme in which the effect 
of both particle dispersion and turbulence field modu- 
lation have been incorporated represent a significant 
step forward in the use of the Lagrangian scheme for 
predicting turbulent fluid-particulate flows. 
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MODELISATION DES ECOULEMENTS TURBULENTS FLUIDE-PARTICULES PAR DES 
SCHEMAS EURELIENS ET LAGRANGIENS 

R&sum&-Deuz aspects importants de I’interaction fluide-particules dam des Coulements turbulents, 
nomement la dispersion turbulente des particules et les effets de modulation de la turbulence, sont trait& 
par la modelisation selon Euler et Lagrange pour dCcrire la phase particulaire. Des approximations du 
gradient de diffusion sont employees dans la formulation eulerienne tandis qu’une procedure stochastique 
est utili&e pour simuler la dispersion turbulente dans la formulation lagrangienne. Le modele de turbulence 
k-e cst utilid pour caracdriser les irhelles de temps et de longueur de la turbulence de phase continue. Les 
modtles proposes pour les deux schknas sont utilisis pour prcdire l%coulement gax-solide turbulent 

pleinement itabli dans un tube vertical avec une precision raisonnable. 

MODELLIERUNG EINER BEGRENZTEN PARTIKELBELADENEN TURBULENTEN 
FLUIDSTRGMUNG MIT HILFE DER BETRACHTUNGSWEISE NACH EULER 

UND LAGRANGE 

Zasammenfaasnng-Zwei wichtige Seiten der Wechselwirkung in einer partikelbeladenen turbulenten St6 
mung von diinnem Gas. niimlich die Einfliisse der turbulenten Dispersion der Partikel und der turbulenten 
Modulation, werden mit Hilfe der Eulerschen und der Lagrangeschen Betrachtungsweise beschrieben. Im 
Fall der Eulerschen Betrachtung erfolgt die Ngherung mittels gradientenbedingter Diffusion, wehrend zur 
Simulation der turbulenten Dispersion ein stochastisches Verfahren in der Lagrangeschen Formulierung 
verwendet wird. Das k-e-Turbulenzmodell wird benutzt, urn das Zeit- und LPngenmaD der Turbulenz der 
kontinuierlichen Phase zu charakterisieren. Die ftir beide Verfahren vorgeschlagenen Modelle werden 
angewandt, urn die voll ausgebildete turbulente Gas/Feststoffstriimung in einem senkrechten Rohr mit 

einer angemessenen Genauigkeit zu berechnen. 

MOflEJHiPOBAHHE OFPAHM9EHHbIX TYPSYJIEHTHbIX DOTOKOB XHflKOCTH M 
sACTMI.J C WCHOJIb3OBAHHEM CXEM 3HJIEPA H JIAFPAHXCA 

~Hcnoabsya 3iInepoa H JIarpamxea nonxonbt nna omscanmt ornenbtibtx @as B pastiaanen- 
tihtx ryp6ynetmtux noroxax rasa c 9acrmtahm, nocnenoaartbt naa aaxmbtx acnerra rteexr&3rtoro nsatr- 
MOneflcrBHI, a Hb(CtUt0. Typ6yJUKrttaa mtcttepcH1 ‘taclmt II 3#eKTbt hconynattHH lyp6yJletiTHocl’H. B 
+OOpMynHpOBKe%JlCpZ3 HCllOJlb3ylOlU np~6~nrm~Hn QWlHCHTHOti Jlil#&3HH, BTO Bpehcll tiaK B@Op 
MynH~BKe~orpam?JUIl MOJlCJWpOMHHIlTyp6yJICHTHOii~e~H HCllOJlb3yelCSCTOJWTHWXHii 
wroa &a xaparrep~cr~m ~cmrntjon npe~ertn rt nnmmr typ6yneHmnm rruosoii @asa npstMert- 
aercn k-e MOJleJrb. HpenJtOXeHHbIC B o&X cxmax MOWJIH Hcnonb3yIoTcr JIJUI nocraToYn0 T09HOro 


